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A 2D LAGRANGE MHD CODE*

R. E. Tipton

Lawrence Livermore National Labo atory
University of California
Livermore, California 94550

ABSTRACT

An MHD model has been implemented on a 2D ".agrangian mesh with cylindrical symmetry. The
magnetic diffusion equations for both Bg and B, B, ar¢ solved. The code has been used to model sev-
eral simple experiments involving induced currents in conducting rings. The calculated results have
been compared with the experimental data. The goal of this research is to develop a detailed computa-
tional model to aid in the design of High Explosive C 2nerators.

INTRODUCTION

In order to facilitate the design and study of ma:netic flux compression generators, a two dimen-
sional Magneto Hydrodynamic computer model is being developed. This paper briefly describes the

hydrodynamic and magnetic equations which are so ved, and presents the results of three test
problems,

A Lagrangian formalism was selected rather than an Eulerian formalism in order to properly re-
solve thin metal parts, usually found in generators, "vithout using an excessive total number of com-
putational zones. In the future, an ALE (Arbitrary Ligrangian Eulerian) capability will be added, which
will allow excessive distortions in the mesh to be srioothed out without any significant loss of accu-
racy. Equation of state and strength of material properties are modeled by a theoretical and empirical

data base that has been adjusted to match a wide v:riety of independent experiments, for a large num-
ber of materials of interest.

The present code can solve for either By or B,, B, as it also solves the hydrodynamic equations. The
magnetic fields may be driven by source currents, or interact with an external circuit. In future versions

of the code, By, B, and B, will be coupled together and solved simultaneously so that helical generators
may be studied.

HYDRODYNAMICS ‘

Conservation of Momentum ]

pU=V.8 +f,+jxB

p = Density

* Work performed under the auspices of the U.:. Department of Energy by the Lawrence Livermore
National Laboratory under Contract W-7405-Eng 48.



U = Veloaty
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— “'otal Stress Tensor

P = Isotropic Pressure

T = Deviatoric Stress Tensor

fy = Forces Due to Artificial Viscosities
j = Current Density

B = Magnetic Field

Conservation of Energy
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Specific Internal Energy
V = Specific Volume

¢o = Heating Rate Due to Artificial Viscosities
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Deviatoric Strain Rate Tensor
¢ = Speed of Light
E = Electric Field

Conservation of Mass

M

M

h

0

Lagrangian Zonal Mass

In the Lagrange formalism, the mass moves v.ith the mesh so it remains constant. From the up-
dated coordinates, new zonal volumes are calcula:ed and the new densities are found.

Equation of State

For many materials a Griineisen equation of state with a cubic fit to the shock velocity particle ve-

locity Hugoniot relation is used. Other materials use polynomial fits to theoretically or experimentally
derived Hugoniots and adiabats.

Constitutive Model

For materials with strength, the Steinberg-Guinan constitutive model is used,! along with the
Steinberg-Sharp strain rate dependence model.?



Finite Difference Scheme

Except for the artificial viscosities, the HEMP differencing scheme on an arbitrary quadrilateral
mesh? is used to integrate the hydrodynamic equations. fohn White’s artificial viscosity? is used com-

bined with William Schulz’s method of centering the artificial viscosity on a two dimensional quadrilat-

eral mesh.®

MAGNETIC DIFFUSION

B, B, Field

Xz

470 6 _ v x v xA9+4ﬂj9+§—ZqAV
T

2rrc
® = 27mrAy  — Magnetic Flux
Ay = Vector Potential

o = Electrical Conductivity

¢ = Speed of Light

jo = Source Current Density

AV = Voltage Drop Across External Circuit

B, = —ﬁ [;;‘Z) — r component of Magneti:: Field
B, = ZLrtr % — z component of Magnetic Field

B, Field

ﬂ(f;:fdsv x 1V x By + 4rAV
C g

b
Q= ] ds By  — Magnetic Flux Inside Surface X
b
B = & component of Magnetic Field
. 1 9By C fC . .
k= "I a7 r Component of Current Jensity
.- 1 9B — z Component of Curre " t Densit /
e = p urr ensity /
Units

C.G.5. EM.U. Gaussian units are used. In this system of units, electric charge is measured in
EMU'’s (Electro-Magnetic Units) which equals ESU (Electro-Static Unit) divided by the speed of light.
The EMU is a more convenient unit than the ESU because the unit of electric current is EMU/sec
which equals 1/10 amp. In order to preserve Ohm's law: | = oE where J has units of EMU/sec/cm?
and E has units of ESU/cm?, it is necessary for the electrical conductivity to be measured in the non-
standard units of o(ESU)/c. The standard ESU unit for conductivity is sec ™!, hence this non-standard
unit becomes cm ~'. The magnetic field is still i »asured in Gauss.



Lagrange Time Derivative

The ® and ¢ appearing in the magnetic diffusion e juations represent Lagrange time derivatives.

. P op
= oY v =-Z 4+U.V
¢ 6t+U (1] 0 6t+ o)

® and ¢ are the time derivatives as seen by a frame of reference locally at rest with fluid. The mag-
netic diffusion equations are written as time derivative; of ® and ¢ rather than A, or By because it is
the extra factor of radius or area inside of the Lagrange time derivative which exactly accounts for the
fact that the fluid is moving and a generalized form of Ohm’s law should be satisfied:

j=o(E+XxB)
C

Conductivity Model

In the present code only a very simple model for the electrical conductivity is used:
o = 1/(7, + MAT)

This allows the electrical resistivity to vary linearly with temperature. Future versions of the code will
include more complex and realistic conductivity mociels.

Finite Difference Scheme

It is impractical to difference the magnetic diffi sion equations explicitly because the stability time
step drops to zero in vacuum zones where the concuctivity is near zero. It is therefore necessary to
solve the equations implicitly. To do this, the V x 'V operator is represented as a symmetric banded
matrix coupling @ or ¢ in each zone to all eight of its nearest neighbors. This coupling matrix is then
inverted by David Kershaw’s ICCG method.® The coupling between two neighboring zones is deter-
mined by first constructing a dual mesh consisting of all the zone centers. @ and ¢ are thought to “sit”
at these points. The dual mesh will also contain arbitrary quadrilaterals. Each quadrilateral is divided

into two sub-triangles. Alan Winslow’s finite element method for determining the V x ¥ coupling on a

i

triangular mesh’ is used with N. J. Diseren’s modi ‘ication.? Since there are two distinct ways of splitting

a quadrilateral into two sub-triangles, each quadri ateral is split both ways and the resulting coupling
matrices are averaged.

PROBLEM #1 SOLENOID ON AN IRREGUIL AR MESH

In order to test the accuracy of the differenc ng scheme for the V x V operator, an infinite sole-
noid problem was set up using an irregular mesh. A © source current was specified between the cylin-
drical radii of 1.0 cm and 1.1 cm such that the magnetic field should be 1.0 Gauss inside the solenoid
and 0 outside. Magnetic reflection boundaries w:re specified at Z=0 cm and Z = 10.0 cm. Hydrodynam-
ics has been turned off. Since the exact solution fo this problem is known, it provides a good test for

the accuracy of the spatial differencing scheme 11sed on an arbitrary quadrilateral mesh for solving the
magnetic diffusion equations.

Figure 1a shows the irregular mesh. This mr 2sh is much more distorted than many actual problems
of interest. When the ALE automatic rezoning i< added, even moderately turbulent problems should
run without serious mesh distortion. The iso-ccntours of the magnetic flux @, is shown in Figure 1b.
Note that the contours are straight and parallel to the axis showing no imprint of the irregular mesh.
Figure 1c shows 1D slice plots of @ vs. r for three places in the mesh. Deviations from the exact solu-
tion are too small to be visible in the plot. Figure 1d shows 1D slice plots of the magnetic field B, vs. r
for the same three places in the mesh. At the ¢dges of the mesh, B, is very close to the exact solution.

In the middle of the mesh, however, where th: mesh is more distorted, B, differs from the exact solu-
tion by as much as 2%.
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Fig. 1a. Irregular mesh used on problem #1. Fig. 1b. Iso-contour plot of the magnetic flux
on problem #1. Contours are parallel to ‘

the axis, showing no imprint of the ‘
'!

mesh.
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Fig. 1c. Magnetic flux versus radius for prob- " Fig. 1d. Magnetic field versus radius for
Iem #1. The flux is within 1% of the problem #1. The field is within 2% of
exact solution. the exact solution.
PROBLEM #2 EXPANDING COPPER RINC ]

Problem #2 is a calculation of an actual experiment. The experimental setup consists of a solenoid
made out of six turns. Each turn was carefully wound to maintain axial symmetry. It was not wound as
a helix. Around the mid-plane of this solenoid a copper ring was placed. A capacitor is discharged into
the solenoid, driving a large current with a peik value of 23 kiloamps. The resulting current in the cop-
per ring interacts with the magnetic field to cause a rapid radial expansion of the ring. The response

current in the ring was diagnosed with a Rogc wski coil. The velocity of the ring was measured with a
Fabre-Perot Velocimeter.

—— =
Only half the problem needs to be incluc ed in the calculation because of symmetry. Figure 2a
shows the three solenoid turns and the coppe ' ring at 20 usec, the time of peak ring velocity. Figure 2b
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Fig. 2a. Global view of problem #2. Symme- Fig. 2b. Blowup showing the computational
try plane is on the left. Three solenoid mesh used in the solenoid/ring area.
turns and half the Cu ring are shown The ring has moved 0.18 cm by this
along with lines of mag. flux. time.

| 8 T T T T T T T T T T T T T T T T T T T T T =

ST INDTUNU U PSRN P UDWEETUE B TN eY

2] |
~ !
D 2. J
2 ‘
= ‘ r \
. 1
1o’ 4 g
o F B i
E : |
F. ALl_AAII:,lAlLA_AJLA_Jc_J_IAj_‘_IA syt vl i d 0. & L 3
o - us ‘! - LY [N - ° - . ”s “— [ ~ L
Fig. 2c. Comparison between the measured Fig. 2d. Comparison between the measured
(Curve A) and calculated (Curve B) re- . (Curve A) and calculated (Curve B) ve-
sponse current in the Cu ring. locity of the Cu ring.

shows a blowup of the solenoid and ring area. Figure 2¢c shows the comparison between the measured
and calculated response current in the copper ring. Note that the overall agreement is rather good. The |
agreement is very good up until the time of peek current. Figure 2d shows the comparison between the
measured and calculated velocities of the copper ring. Note that within the scatter in the data, the

agreement is good. The velocity in the calculatiin is more sensitive to the details of the strength model
used rather than the MHD model.

PROBLEM #3 COAXIAL GENERATOR

Problem #3 is a calculation of a simple cc.axial generator intended to illustrate the code’s capability
to solve problems with By fields coupled to hrdrodynamic motion and an external circuit. The problem



consists of a cylinder of PBX-9404, 8.8 cm in length and : 0 cm in radius. Surrounding the explosive is a

I mm thick cylindrical shell of copper. This inner copper hell is surrounded by a void, followed by an
outer copper shell with an inner radius of 3.0 cm and an >uter radius of 3.1 cm. At time zero, the explo- )
sive is detonated at z=0 cm with a plane detonation pat »m. At the same time, an external capacitor \
discharges into the generator. At 3 usec, the capacitor ha: reached its peak current of 10* EMU/sec ]
(10° amps) and the void in the generator is filled with a ‘1agnetic field of about 5 kilogauss. At this ‘
time the capacitor is switched out of the external circuit nd the load is switched in. The inner copper
shell continues to compress the magnetic field in the voiil until 12 ysec when a peak current of

1.6 x 10° EMU/sec (1.6 x 107 amps) is reached.

In order to perform this calculation, it was necessar. to add a void closure routine to the code. This
routine simply converts void zones into copper zones wenever the volume of the void zone reaches a
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Fig. 3a. Coaxial generator at 5 us. Half the Fig. 3b. Blowup of contact region at 10 us
explosive has detonated. The void con- showing that void zones are converted
tains a magnetic field of 5 kilogauss. ! to Cu.
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Fig. 3c. Contact region at 10 us showing lines Fig. 3d. Output current of generator in EMU/s.
of constant B,. Most of the magnetic | The initial current of 10* EMU/s (10°
field is in the void with strong gradi- amps) has been amplified by 160.

ents at Cu surfaces. Some magnetic !
field is trapped behind contact point.



reasonably small value. This conversion is done in such a way that momentum, energy and magnetic
flux are conserved.

Figure 3a shows the generator 5 usec after the detontion begun. This is just before the two copper
cylinders make contact. Figures 3b, 3c and 3d show blowups of the contact region at 10 usec, showing,

among other things, that some of the magnetic flux beco nes trapped behind the contact point and can-
not contribute to the output of the generator.
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